README

why did I make it? 
why did I fail?
  • single feature
  • feature mean pooling
  • feature max pooling
  • https://www.bilibili.com/video/BV1Xp4y1b7i

Target

2021-04-12 -> 2021-04-18

Date Sleep before 1:00 Selfie Squat * 20
2021-04-12
2021-04-13
2021-04-14 Y
2021-04-15
2021-04-16
2021-04-17
2021-04-18

Academic

Coding

git

放弃工作区修改,一定不能忘记--,否则就是切换 branch 了

git checkout -- filename

Bookmarks

https://www.novipnoad.com/anime/134365.html

Buying

  • 显示器最低分辨率 2k

Ideas

Machine Learning

precision and recall

Ground Truth \ Prediction Positive Negtive
True TP TN
False FP FN

precision=TPTP+FP\text{precision} = \frac{TP}{TP + FP}

recall=TPTP+FN\text{recall} = \frac{TP}{TP + FN}

去医院看病
有病,诊断有病 TP 真阳性
没病,诊断有病 FP 假阳性 误报
有病,诊断没病 FN 假阴性 漏报
没病,诊断没病 TN 真阴性

Math

  • 概率:理论值
  • 频率:实验值

Normal Distribution

  • 对于正态分布 XN(μ,σ)X \sim \mathcal{N}(\mu, \sigma),其概率密度函数f(x)=12πσexp((xμ)22σ2)f(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
  • 如果 XN(μ,σ)X \sim \mathcal{N}(\mu, \sigma),那么 XμσN(0,1)\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)。(证明:普通正态分布如何转换到标准正态分布

如果 XN(0,1)X \sim \mathcal{N}(0, 1),那么 f1(x)=12πσexp((xμ)22σ2)=12πexp(x22)f_1(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)

如果 XN(0,σ)X \sim \mathcal{N}(0, \sigma),那么 f2(x)=12πσexp((xμ)22σ2)=12πσexp(x22σ2)f_2(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)

f2(x)f1(x)=12πσexp(x22σ2)12πexp(x22)=1σexp(x22(1σ21))=1σ[exp(x22)]1σ21=1σ[2πf1(x)]1σ21=1σ(2π)1σ22σ2[f1(x)]1σ21\frac{f_2(x)}{f_1(x)} = \frac{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)}{\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)} = \frac{1}{\sigma}\exp \left( -\frac{x^{2}}{2} \left( \frac{1}{\sigma^2}-1\right) \right) = \frac{1}{\sigma}\left[\exp \left( -\frac{x^{2}}{2} \right)\right] ^ {\frac{1}{\sigma^2}-1}\\ = \frac{1}{\sigma}\left[ \sqrt{2 \pi}f_1(x) \right] ^ {\frac{1}{\sigma^2}-1} = \frac{1}{\sigma}(2 \pi)^{\frac{1 - \sigma^2}{2\sigma^2}}\left[f_1(x)\right]^{\frac{1}{\sigma^2} - 1}

f2(x)=1σ(2π)1σ22σ2[f1(x)]1σ2f_2(x) = \frac{1}{\sigma}(2 \pi)^{\frac{1 - \sigma^2}{2\sigma^2}}\left[f_1(x)\right]^{\frac{1}{\sigma^2}}

Sentences

  • "Maturity is learning how to start when you feel like procrastinating and learning how to listen when you feel like talking."

    From James Clear james@jamesclear.com via h.ckdlv.net

  • "Solve big problems early.
    Rebound after one missed workout, not a decade of inactivity.
    Repair a strained relationship the next day, not years later.
    Fix overspending before it becomes a lifestyle.
    Problems with simple solutions at first become difficult to unwind over time."

    From James Clear james@jamesclear.com via h.ckdlv.net

Travel